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Introduction

The classification problem arises when one makes a number of observations
on an individual or an object and then wants to classify the individual (or the
object) into one of several categories on the basis of these observations. Here we
will be concerned with two categories and a situation where these categories are
completely specified by densities pi, p.^. Let z={zi, ••.,z^)' be the observation
vector on the individual. We know for certainty that it comes from either p-^^ or p.^.
Our problem is to decide from which population did he arise ? Let Ui denote the
action that z comes from pi and denote the action that z comes from p^^ and let
Cj be the penalty of taking action when z actually belongs to p^ and let Cg be the
penalty of taking action when z actually belongs to py. The penalty of taking
correct action is zero in either case.

Let (tT], l—TT]) denotes the aprior probability distribution on the states of
nature {p^^, p^. Then the a posterior probability distribution (^j, 1-?i) on (pi,
given z is given by

The posterior expected penalty for taking action a^ is

and for taking action is
7rjj9i^)c2

Thus optimum procedure in this case is to take

action aj, if

If

A(z) (l -'ri)ci '

action a^, if •
Py{z) (1

Pz{^) TEjCg
yiCf) (l-7tl)Cl

Then we must randomize to decide the type of action to be taken.
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If pi, are specified by ;7-dimensional normal density functions with the

same positive definite covariance matrix^ but difi"erent means a=(aj,
P=(Pi) Pj))' respectively, then we take

action Aj ; if z_' 2] (P-a) > i tr (pp'—aa') ^ + log ;

action ; if- / a) <i tr (PP'-a '̂) +1°^ (1^^;

According to Fisher (1938) the linear function 2] (^i^P) is known as

"discriminant function" and the components of the vector 2] (P—®) are called
"discriminant coefiicients".

In actual practice the mean vectors ^and the covariance matrix ^ are un
known. The problem of statistical inference and estimation of these coefiicients are
solved on the basis of sample observations X^, ..., X'^ from the normal population

(;;-dimensional) with mean a and covariance matrix ^ and sample observations
P, from the normal population (;;-dimensional).with mean p and covariance

matrix Sufiiciency consideration leads us to restrict our attention to the set of

m n m n

sufficient statistic (x =2Z"//j7, ^ ^ 0^-X) (Z„—z)'+S (^—y)
where £, 'y are independently distributed /^-dimensional normal random

variables and S is distributed as a Wishart random variable. For the inference

problem, invariance and sufficiency consideration always permit us to consider the
statistic (X—"T, Since distributed as /^-dimensional normal

random variable with mean a—P and covariance matrix by relabeling

variables we can consider the following canonical form where X is normally distri

buted with mean aand covariance matrix ^ and Sis distributed as Wishart with

parameter degrees of freedom iV—1(-//), and we want to consider inference

problems concerning ^ a=y].

Let •/i=(v)i, ..., and let q<p'<p. We will consider here the.following three
diff'erent problems :

A. To test the null hypothesis/fjo :^=0 against the alternatives : vja+i

=...=7)j,<=0 when both ^ 2] unknown.
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B. To test the null'hypothesis : v)3^.j=...=y)j,=o against the alternatives
i/ii : •/]:/:0, when both a, S are unknown.

C. To test the null hypothesis i/go : •ia+-i='"- = i3)=0 against the alternatives

jf/31=...=-/)3,=0 when both a, ^ are unknown.

We will find here the best invariant tests for these problems. We will show
. that these best invariant tests are also the hkelihood ratio tests. In section 2 we

will discuss the principal of invariance and the reduction of these problems in terms
of maximal invariants which characterizes the invariant tests. In section 3 we will

find these best invariant tests.

2. lavariance

The notation of invariance of a statistical testing problem under a trans
formation is essentially the same as the notion of invariance in any branch of
Mathematics. It is a generally accepted principal that if a problem with an unique
solution is invariant under certain transformation then the solution is invariant

under that transformation. The main reason for the strong intuitive appeal of
invariant decision procedure is the feeling that there should be an unique best way
of analysing a collection of statistical information. Nevertheless in cases where the
use of an invariant procedure conflicts violently with the desire to make a correct
decision with high probability or have a small expected penalty (loss) it must be
abandoned.

Lex X be sample space, p a o-algebra of subsets of Xand let O be the
parametric space. Denote by Pb the probability measure on p corresponding to
d in O. Let A be the action space and let L be a real valued function on Ox.4 XX,
the loss function (penalty function). A pure decision procedure is a function "d"
on X to ^ and its associated risk is

R{0,d)=E„L{6,d{x),x) ...(2-1)

where Ee denotes the mathematical expectation when X is distributed according to
Pg. In order that (2'1) should be meaningful we introduce a a-algebra a of subsets
of A and require that L be ap measurable in its last two arguments and that d be
(P, a) measurable. More precisely

for each 0^0 and real c ...(2'2)

{(a, x) : L (0, fl, x) < c} € a P

where we define ap as the smallest a-algebra containing all cartesian product A^XB^
with Ai € a and fe P and

{X : d {x) € ^)} € Pfor all ^1 € a. ...(2-3)

We also require that L be bounded from below.
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We are interested here in testing the liypothesis H : 9 ^ CO, against the
alternatives //^ : 0e O^^CO. In this case the action space Acontains only two
elements, namely, accept the hypothesis H or reject the hypothesis H (accept Hi).
A commonly used loss function in such cases is the normalized 0—1 loss function,
the loss (penalty) of accepting the correct hypothesis being 0 and the associated risks
are the two types of error of the testing hypothesis problem. The decision function
d{x) is replaced by (fix) which is, in Lehmann's terminology (1959), the probability
of rejecting the hypothesis. For nonrandomized tests is either 1 or 0. Let
g be 1—1 transformation on X onto Z, (3, P) measurable in both direction and
A

g a 1-1 funtion ononto (a, a) measurable in both direction. We say that
the statistical testing problem we have formulated is invariant under (g, g) if the
following conditions hold :

1. There is a function g_ on O. onto. O. such that for each 0if Z is distributed
according to Pg, thegx is distributed according to P-^ . This can be expressed by
saying that for all B the probability that

PgO (B)=Pe(g-^B) (g-i is the inverse ofg). ...(2'4)

If -P is 1—1, which we shall always assume, it is easy to see that g is 1—1
onto and is uniquely determined.

- A

2. L ( g9, ga, gx)=L(e, a, x) for all 6 ^ a ^ A and x ^ X.

3. Under these circumstances the test function 0(jc) will be said to be
invariant under g if for all x

^igx) = (f)ix). ...(2'5)

In terms of decision procedure this can be stated as
A

digx)=gd(x). ,..(2-6)

This says that if we use the test procedure ^ then we get the same conclusion
whether we use x or gx. Roughly speaking two people using essentially the same
test procedure but different coordinate system will get the same result. In this
context it must be understood that the solution is expressed in terms of the
numerical coordinates alone without direct reference to the coordinate system used.

For any two transformations gi, ga on X onto x satisfying the conditions
1—3 above it is now clear that the transformation g^g^ and the inverse transform-
a^n ^i^defined b^ (g^g^) (x)=gi(gs(x)) and g,gr^ (x)=x for all x satisfies
Sigi = g2 > and the conditions 1--3 above. Thus, given a set S of
transformation, satisfying conditions 1—3 we can always extend it to a group, each
of whose members satisfies the conditions 1—3. Thus in finding invariant tests we
will always refer it with respect to a group G rather than the set S. Furthermore
the induced transformation on Ocorresponding to Gon Xalso form a group
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It is wellkiiown that some simphfication is introduced in the testing problem
by characterizing the statistical tests as a- function of the suflBcient statistics. In the
case of invariant tests it is also convenient to characterize the totality of invariant
tests as a function ofstatistic which is popularly known as maximal invariant. A
function r(.\) defined on Xis called a maximal invariant with respect to agroup of
transformations Gon Xonto Xif (/) T(x)=T(gx) for a\\ x ^ 1 and g ^ Gand (n') if
T{x) =T(y) for x, j €X then there exists a g€G such that>=5x. Now, any
invariant test <f(x) is afunction of T(x) follows from the" fact that ifs^(x)=/;(r(x))
for all X (/i=function) then

<i^{gx)=h{ngx))=h(Tix))^^{x)

and conversely if (f) is invariant and if r(x) =r(j) then y=gx for some g€G and
therefore 0(x)= ^(j). Sufficiency provides a simplification to a statistical problem
by reducing the dimension of the sample space to the dimension of the space of
sufficient statistic but the process does not change the parametric space. On the
other hand invariance by reducing the sample space to the dimension of the space of
the maximal invariant shrinks also the parametric space. This follows from the fact
that the distribution of the maximal invariant in the sample space with respect to
the group G depends on the parameters only through the maximal invariant in O
with respect to the induced group ~G . This is seen to be the case by observing the
following : Let T(x) be a maximal invariant in Xwith respect to G and v(0) be a
maximal invariant in Owith respect to G and let v(0])=v(0f) for Oi, Then

for some T Now for any 5 G/3
P9/r(x)€5)=P0,(r(gx)e5)

-Ps,,(T{gx)^B)

3. Invariant Tests

Let = N be a set of N observations from a
~ _ W

normal population with mean « and covariance matrix J and let X=SX"/7Vand

(X"—5^)'. We will assume throughout that N>p so that S is

positive definite with probability one. Write for any ^j-vector K)'
ba,=(.bu ...,b,y, = ...,M'and for any pXp matrix C, Cn is the upper
left-hand cornered qxq sub-matrix of Cand C(2s) is the upper left-hand cornered
p'y.p' submatrix of C.

Problem A. The problem of testing F,o against remains invariant under
the group GofqXq nonsingular matrices.

g=
gii, 0 \

\g21> 822/



operating as (^X, a, (gX, ga, gSg'), where gu is the qXq submatrix of g: A
set of maximal invariant in the samplespace with respectto G is (i?j, iJg) where '

. J?i+i?2=iVj'(S+iVx 1')"'-^ .s

A corresponding maximal invariant in the parametric space is (Sj, 63)
where

5i=i\ra' (y ,/ -(1) KLnJ, -(!)' , .

S^+5,=iVa' ...(3-2)

Obviously'> 0, > 0 for i=l, 2. From Giri (1964) the joint probability
density function of (i?i, iJj) is given by

/('•i,'-2)=exp (-1(81+82)-! Safj)

;(48.)^r(-|+j)r(x) ^v. , ,
;/•! r (f) r(-|-+y)

^ (,TJ (l-'-l-'-2)
...(3-3)

It is easy to see that (see for example Giri (1965)) Hio:5i=Sa=0, Fn: Sa-^O.
, Hence the ratio of the density of (i?j, i^a) underHu to their density under Hio is
. given by • • • . . v - - :• ;

f 1. 2^0. (2+-^")^I,2).„

Hence the test which rejects if-Ri > constant (depending onthesize ofthe
test) is unformly most powerful invariant. •Fromi (i'3) it follows that under Hio, Ri
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is distributed as beta with parameter . From Giri (1964) it can be

shown that it is also the likelihood ratio test for this problem.

Problem B. The problem of testing against remains invariant under
the group of transformations G of problem A. Under : §2=0 and under Hgi:
Si>0, 82>0. Giri (1964) has shown that the likelihood ratio test of this probleni is
to reject Hio if

n' 1 -^1— ^ J ,Z'=-—-—-—? < constant
l—Ri

depending on the size of the test.

From (3*3) the joint probability density function of Z and i?i under i/ao is

1 I 1 1 ^-P _ I P-i _i

exo(-in f ^ (l-(?i) ^ ^ ^ (1--Z) ^

....(3-5)

Hence under Z is beta distributed with parameters —and is

independent of Ri. Further from (3"3) i?i is suflScient for Sj. Giri (1964) has shown
that the distribution of is boundedly complete. Hence any invariant test ^ (/"i,
of level a for testing against H^x has Neyman structure with respect to Rx
(Lehmann (1959) p. 134), i.e.

...(3-6)

Moreover from (3*3)

I ^i)

=exp,(-i5,(l-i?,)) \ ^ ...(3-7);=o ^•!r(^^+y)r (^)

Now it is evident that the distribution of R2=(l —R^{l—Z) on each surfa:ce
i?i=ri is independent of Sj. Hence (see Lehmann (1959)) the likelihood ratio test for
testing Fjo against i?2i is uniformly most powerful invariant similar.

Problem C. The problem of testing Hsq against H^i remains invariant
under the group Gj oipXp nonsin^lar matrices

gi= (gii, 0, 0 \
821) g22; 0 I
gs:) g32) §33 /
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operating as (x, «, 2]) >( 8^, ga, g2]g') where g^, gas are qX^,
(p'~^)x(p'—9) and (p—p')'X(p—p') submatrices of g respectively. Giri (1965)
has shown that a maximal invariant in the sample space is (Ri, R^, R3), -R<>0
where

Ri—N_x (1) (Sii+JV X'(i) ^(1))"^ X(i);

Ri+ R2=NT'|;2](S[22] +iV ^[2] •^[2])'̂ ^[2];

^i+-R2+i?3=^^(S+iV7 F)~V^-

A corresponding maximal invariant in Q with respect to the induced group
^ is (§1, §2, 8g), 5i>0 for all i where

Si=iV«'(i) ;

^ - [1-\L[22-\-W '

Si+S2+S3=iVa'y]~'a.
[5 " •"

Under Hso '• 83=0, §2=0, Si>0 and under i/ai : 83=0, S2>0, Si>0.

It has been shown (Giri (1965)) that the likelihood ratio test for this problem
is to reject if

where C is a constant, chosen to yield a test of size a and under ifgo, Z is

distributed as beta with parameters ^ and is independent of R^.

Furthermore Giri (1965) has shown that the likelihood ratio test for this problem
is uniformly most powerful invariant similar for testing against 7/31. The
details in this case are omitted and the reader is referred to Giri (1965) for these.

4. Summary

Certain invariant tests for discriminant coefiBcients in classification problems
are discussed in this paper.
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