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Introduction

. The classification problem arises when one makes a number of observations
on an individual or an object and then wants to classify the individual (or the
object) into one of several categories on the basis of these observations. Here we
will be concerned with two categories and a situation where these categories are
completely specified by densities p,, p,. Let z=(zy, ..., z;)’ be the obscrvation
vector on the individual. We know for certainty that it comes from either p, or Ds.
Our problem is to decide from which population did he arise ? Let a, denote the
action that z comes from p, and a, denote the action that zcomes from p, and let

¢, be the penalty of taking action g, when z actually belongs to p, and let ¢, be the
penalty of taking action @, when z actually belongs to p,. The penalty of taking
correct action is zero in either case,

Let (my, 1—m;) denotes the aprior probability distribution on the states of
nature (py, p;). Then the a posterior probability distribution (£,, 1—£;) on (p;, n,)
given z is given by '
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The posterior expected penalty for taking action g, is
4 (1—7)p@ey
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and for taking action a, is .
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Thus optimum procedure in this case is to take
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Then we must randomize to decide the type of action to be taken.
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" 1If py, py are specified by p-dimensional normal density functions with the
same positive definite covariance matrix 2 but different means « =(ey, .., a,)’,

p=(8, ..-., B respectively, then we take

action a, ; if 2’ 2 B— a) > 4 tr (Bp'—aa’) Y} '+ log a nf3c1
action a, ; if- 2’ 2 (Q_— oi) < § tr (Bp' —ox') 2 + log (i i‘i‘;)—cl «(12)
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According to Fisher (1938) the linear function z’ Z @: B) is known as

~1
““discriminant function” and the components of the vector E (B—a) are called

“discriminant coefficients’.

in actual practice the mean vectors «, b and the covariance matrix 2 are un-

known. The problem of statistical inference angi estimation of these coefficients are
solved on the basis of sample observations X, ..., X™ from the normal population

(p-dimensional) with mean « and covariance matrix Z and sample observations
Y!, ..., Y" from the normal population (p-dimensional). with mean B and covariance

matrix E Sufficiency consideration leads us to restrict our attention to the set of

m

n
sufficient statistic (X 2X°‘/m Y = EY“/n S E(X“ -X) (X,—X) 45 (¥Y*—7)
2) e d)rall =2

(Yo~ Y)) where X', v are 1ndependently dlstrlbuted p-dimensional normal random

variables and S is distributed as a Wishart random variable. For the inference
problem, invariance and sufficiency consideration always permit us to consider the
statistic (X —7Y,S). Since X —Y is distributed as p-dimensional normal

random variable with mean «—p and covariance matrlx % —’11—)2, by relabeling

variables we can consider the following canonical form where X is normally distri-

buted with mean « and covariance matrix 2 and Sis distributed as Wishart with
parameter 2 and degrees of freedom N—1(=#), and we want to consider inference

problems concerning 2 a=".

Let n=Cyy, ..., 1)’ and let g<p’<<p. We will consider here the following three
different problems :

A. To test the null hypothesis Hy, : 1==0 against the alternatives Hy ot en
1,=0 when both a, E are unknown.

I
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B. To test the null hypothesis Hag : g4;="...=7,=0 against the alternatives
Hjy : n#0, when both , Z are unknown.

C. To test the null hypothesis Hyg : %ey==.:. ="p=0 against the alternatives

Hgy oy =...=7,=0 when both «, E are unknown.

We will find here the best invariant tests for these problems. We will show

. that these best invariant tests are also the likelihood ratio tests. In section 2 we

will discuss the principal of invariance and the reduction of these problems in terms

of maximal invariants which characterizes the invariant tests. In section 3 we will
find these best invariant tests. ’

2. Invariance

The notation of invariance of a statistical testing problem under a trans-
formation is essentially the same as the notion of invariance in any branch of
Mathematics. It is a generally accepted principal that if a problem with an unique
solution is invariant under certain transformation then the solution is invariant
under that transformation. The main reason for the strong intuitive appeal of
invariant decision procedure is the feeling that there should be an unique best way
of analysing a collection of statistical information. Nevertheless in cases where the
use of an invariant procedure conflicts violently with the desire to mwake a correct
decision with high probability or have a small expected penalty (loss) it must be
abandoned. ‘

Lex % be sample ‘space. B a o-algebra of subsets of X and let Q be the
paramétric space. Denote by P, the probability measure on B corresponding to
fin Q. Let 4 be the action space and let L be a real valued function on QXAXA,
the loss function (penalty function). A pure decision procedure is a function “4”
on X to A and its associated risk is ‘

R, d)=E,L(0, d(x), x) : (2D

where E, denotes the mathematical expectation when X is distributed according to
P,. In order that (2'1) should be meaningful we introduce a s-algebra « of subsets
of A and require that L be «f measurable in its last two arguments and that 4 be
(B, ®) measurable. More precisely ' '

for each 9 € © and real ¢ , (22
{a,;x) : L(0,a,x) < c}€af

where we define af} as the smallest o-algebra containing all cartesian product 4, X B,
with 4; € « and B; € § and

(X :d(x)€ A4} €p for all 4, € a. . a(23)

. We also require that L be bounded from below.




5

We are interested here in testing the hypothesis H : 0 € Qg CQ against the
alternatives H,; : § € QHICQ. In this case the action space A contains only two
elements, namely, accept the hypothesis H or reject the hypothesis H (accept Hjy).
A commonly used loss function in such cases is the normalized 0—1 loss function,
the loss (penalty) of accepting the correct hypothesis being 0 and the associated risks
are the two types of error of the testing hypothesis problem. The decision function
d(x) is replaced by ¢(x) which is, in Lehmann’s terminology (1959), the probability
of rejecting the hypothesis. For nonrandomized tests ¢(x) is either 1 or 0. Let

gbe 1—1 transformation on X onto X, (8, B) measurable in both direction and
A . -
g a 1 -1 funtion on A4 onto 4, (¢, a) measurable in both direction. We say that

the statistical testing problem we have formulated is invariant under (g, g) if the
following conditions hold : '

1. There is a function g on Q onto Q such that for each ¢ if X is distributed

according to Py, the gx is distributed according to g0 - This can be expressed by
saying that for all B € B the probability that

P30 (B)=Py(g~'B) (g! is the inverse of g). ‘ (249

If P is 1—1, which we shall always assume, it is easy to see that g is 1-1
onto and is unignely determined.

A
2. L (g6, ga, gx)=L{G,a,x)forall g €Q,a€dand x € X.

3. Under these circumstances the test function ¢(x) will be said to be
invariant under g if for all x

b(gx) = B(x). . (2°5)
In terms of decision procedure this can be stated as
A
d(gx) =gd(x). e (26)

This says that if we use the test pfocedure ¢ then we get the same conclusion
whether we use x or gx. Roughly speaking two people using essentially the same
test procedure but different” coordinate system will get the same result. In this
context it must be understood that the solution is expressed in terms of the
numerical coordinates alone without direct reference to the coordinate system used.

For any two transformations g;, g, on X onto y satisfying the conditions
1—3 above it is now clear that the transformation g,g, and the inverse transform-
ation g,7%, defined by (g,g,) (x)=g,(g:(x)) and gg,"? (x)=x for all x satisfies

£182 = g1 82, &1 == g, ' and the conditions 1—3 above. Thus, given a set S of
transformation, satisfying conditions 1—3 we can always extend it to a group, each
of whose members satisfies the conditions 1—3. Thus in finding invariant tests we
will always refer it with respect to a group G rather than the set S. Furthermore
the induced transformation on Q corresponding to G on ¥ also form a group G .
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It is wellknown that some simplification is introduced in the testing problem
by characterizing the statistical tests as a- function of the sufficient statistics. In the
case of invariant tests it is also convenient to characterize the totality of invariant
tests as a function of statistic which is popularly known as maximal invariant. A
function T(») defined on X is called a maximal invariant with respect to a group of
transformations G on X onto % if () T(x)="T(gx) for all x € X and g € G and (i7) if
T(x)=T(y) for x,y € X then there exists a g € G such that y=gx. Now, any
invariant test ¢(x) is a function of T(x) follows from the fact that if ¢(x)=hT(x))
for all x (h=~function) then _ ,

$(gx) =h(T(gx)) =T (x))=$(x)
and conversely if ¢ is invariant and if T(x)=T(y) .then y=gx for some g € G’ and
therefore ¢(x)= ¢(y). Sufficiency provides a simplification to a statistical problem
by reducing the dimension of the sample space to the dimension of the space of
sufficient statistic but the process does not change -the parametric space. On the
other hand invariance by reducing the sample space to the dimension of the space of
the maximal invariant shrinks also the parametric space. This follows from the fact
that the distribution of the maximal invariant in the sample space with respect to
the group G depends on the parameters only through the maximal invariant in £
with respect to the induced group G . This is seen to be the case by observing the
following : Let T(x) be a maximal invariant in % with respect to G and v (9) be a
maximal invariant in Q with respect to & and let v(6,)=v(9;) for 6;, 8, € Q. Then
~8,= g 0, for some ¢ € G . Now forany Be ;

Py, (T(x) € B)="Py, (T(gx) € B)
=P, (T(gx) € B)
=P02 (T(x) € B)

3. Invariant Tests
Let X*=(Xq, - , Xup), =1, ..., N be a set of N observations from a

_ N
normal population with mean « and covariance matrix E and let X =3 X*/Nand
et 259=

N . — . : .
S=3(X*—X) (X*—X)". We will assume throughout that N>p so that S is
R

positive definite with probability one. Write for any p-vector b=(by, s by
bay=(bys +-» b biy=(b1, «-» b,) and for any pxp matrix C, Cn is the upper
left-hand cornered g X g sub-matrix of C and C(qy is the upper left-hand cornered

p’ X p' submatrix of C.

Problem A. The problem of testing Hyo against H,; remains invariant under
the group G of gX¢ nonsingular matrices.

g= f gl]:p )
- kgzp Zas
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operating as (X, o, 2) (gX, gz, g5 g), where gy, is the g X ¢ submatrix ofg:d”
set of maximal invariant in the sample space with respect to G is (R,, R2) ‘where'"

(1) (Sll+NX(1) X(l)) X(l)’

:R1'+R2==NX (S+NX X)X (3 1)

A corresponding maximal invariant in the parametnc space Q is (81, 2)

~1
—(1) (211) -y’

81+82_Na 2 @ . (32)

where

' Obv1ously Ry >0, 81 > 0 for 1—1 2, From Gm (1964) the Jomt probablllty
densxty function of (Rl, R,)is given by '

S(ry, ro)=exp (—% (81 +3)—% 8ory)

(nda) (X )r(4)

.-j_—?ov j!‘[‘.(_]y_)[‘(_g__*_j) . c AR o
5 ( “2 o) © (7 e )e(GE)

IARTICOE G

Lt Lip—g-1 —2—-(N—p)—

O e
oL L ()(" 2")E (N"’A

It is easy to see that (see for example Gm (1965)) H,y:8,=83=0, Hy1: 3,0,
- Hence the ratio of the den51ty of (Ry, Rz) under Hj, to their den51ty under Hm is
. given by. -

_ dIZH_n("]l,fi.b) 1 m 4t 281) f(N +])[‘( )
ey (_781)"'50 j! I‘('_'H)f (N)

Hence the test which rejects Hio'if R‘l > 'conetant (depending on the size of the
test) is unformly most powerful invariant. : From (3-3) it follows that under Hyo, R,

69

34)
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1s drstrrbuted as beta with parameter

q N— ) From Giri (1964) it can be

shown that it is also the likelihood ratio test for th1s problem.

Problem B. The problem of testing H,y against Hy, remains invariant under
the group of transformations G of problem A. Under Hyy: 8,=0 and under Hy; :
3,>0,-3;>>0. Giri (1964) has shown that the likelihood ratio test of this problem is
to reject Hy, if

1 —RI—RB
1—R, < constant

depending on the size of the test.

yAS

From (3'3) the joint probability density function of Z and R, under Hy is

a4 41 N—q N—p _ P=q
5y = GorYrn?  (1-g) ? z?* (-2?
exp (=3 %) > N—q ¢ N—p p—gq
=o npl~——4 49 ., NP P—49
g 8(=5t 5+ )8 (5.5 :
‘ ..(35)
Hence under Hy,, Z is beta distributed with parameters N—p p—4 and is

2 2
independent of R;. Further from (3'3) R, is sufficient for §,. Giri (1964) has shown
that the distribution of R, is boundedly complete. Hence any invariant test ¢ (ry, r2)
of level « for testing Hy, against H, has Neyman structure with respect to R,
(Lehmann (1959) p. 134), i.e.

Epy $(Rs, R) | Ry=. o .36)

Moreover from (3-3)
dPy, (R | Ry)
dPHlo(RB l Rl)

N—q  Nx7p=a
(Rzza ) r (L) ()

J=0 S e N—q

| i (PFLei)r (73

Now it is evident that the distribution of Ry=(1--R)(1—2Z) on each surface

R,=r, is independent of &;. Hence (see Lehmann (1959)) the likelihood ratio test for
testing Hy, a,gamst H21 is uniformly most powerful invariant similar. :

~exp (—18:(1—Ry)) ~-(37)

Problem C ‘The problem of testing Hao agamst Hjy, remains invariant
under the group G; of pXp nonsmgular ‘matrices

E115 0’ 0
821> Bo2, 0
831> 832> 8a3

s
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Operatlng as (X: 0(_, Z) _—)< 52(3 _g_a_,_ 8 Eg, ) ‘where . 811, 822, 8as are qxq:

@' —)x(p'—q) and (p—p")X(p—p') submatrices- of g respectively. Giri (1965)
has shown that a maximal invariant in the sample space is (Ry, Ry; Ry), Ri>0

where

Ri=NZX'0y Su+N¥ X ) X ;
Ryt Re=NX"121(Sp2) +N X2] X'121)™" X 21
Ryt Ryt R=NT(S+NX X)X
A corresponding maximal invariant in Q with respect to the induced group
Gy is (3, 3,, 83), 8,20 for all i where
. -1
d1=Ne'y) 2 Sw s

Putae= N o (2217121 >

-

-1
813+ 8 =N’ ) o
Under Hyy @ §3=0, 82=0, 3,>0 and under Hj, @ 83=0, 3,>0, 81>0.
It has been shown (Giri (1965)) that the likelihood ratio test for this problem

is to reject Hy, if

1—Ry—
1—R,
where C is a constant, chosen to yield a test of s1ze « and under Hy,, Z is

Ze R ¢

distributed as beta with parameters N;p r S P9 and is independent of R,,

Furthermore Giri (1965) has shown that the likelihood ratio test for this problem
is uniformly most powerful invariant similar for testing H,, against Hy;.. The
details in this case are omitted and the reader is referred to Giri (1965) for these.

4. Summary
Certain invariant tests for discriminant coefficients in -classification ‘problems
are discussed in this paper.
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